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Some Theoretical Considerations of Fibre 
Pull-Out from an Elastic Matrix 

P. LAWRENCE*  

Previous theoretical work on fibre pull-out from an elastic matrix is briefly discussed and 
its relation to this present work is indicated. The form of the distribution of shear stress 
and that of load along the fibre length is determined and its dependence on the elastic 
properties and fibre length is shown. The theory has been developed to account for the 
debonding of fibres from the matrix. The maximum fibre load necessary to cause complete 
debonding and subsequent pull-out is determined and the dependence of the maximum 
shear stress on the effective embedded fibre length is shown to affect the shear strength 
calculated from a pull-out test. 

1. Introduction 
With the development of brittle-matrix compo- 
site materials the importance of the contribution 
of fibre pull-out to the strength of  the composite 
has grown; the extent of this fibre pull-out is 
influenced by the development of an interracial 
bond between the fibre and matrix. In compari- 
son with the extensive literature on composites 
in general very few papers, a few of which are 
cited by Greszczuk,[1 ], deal specifically with the 
fibre-matrix interface. A theoretical analysis of 
stresses near a discontinuity in a filament- 
reinforced composite metal has been made by 
Dow [2] and one of his theoretical model 
configurations is close to a pull-out configuration. 
However, his equation for the shear stresses 
along the fibre-matrix interface is not equivalent 
to that derived by Greszczuk [1], who con- 
sidered fibre pull-out, since the boundary 
conditions are not identical. In the former case 
the fibre is effectively stressed at both ends but in 
the latter the embedded end of  the fibre carries 
no load, the load having been entirely transferred 
to the matrix at this point. 

Very little other theoretical work on the shear 
stresses developed during fibre pull-out has been 
done. Watstein [3] measured experimentally the 
shear stresses developed when extracting iron 
rods from cement. Consequently the plastic- 
matrix theory which assumes a uniform shear 
suess along the length of the embedded fibre has 
been applied, as a first approximation, to fibre 
pull-out from an elastic matrix in cases where the 
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embedded fibre length is short. De Vekey and 
Majumdar [4] employed this approach, pointing 
out that the calculated values of the shear 
strength of  a glass fibre/cement interface were 
likely to be low. 

If  the matrix is elastic the shear stress is no 
longer uniform and the load transferred between 
the fibre and the matrix does not change 
uniformly with length along the fibre. The 
distribution of shear stress and that of load along 
the fibre length depend on the elastic properties 
of  the fibre and the matrix and the length of the 
embedded fibre. A determination of these 
functions for shear stress and load is presented 
here, the former being directly equivalent to the 
equation derived by Greszczuk [1], the sole 
difference being the end of  the fibre from which 
distance along the fibre is measured. The theory 
has been further developed to include debonding. 
The value of the maximum shear stress developed 
relative to the shear strength of the fibre-matrix 
interface determines whether debonding and 
pull-out will occur. Based on this criterion the 
variation in the load necessary to produce fibre 
pull-out and in the maximum shear stress 
developed with change in the effective embedded 
fibre length has been determined. 

2. Distribution of Load and Shear Stress 
along the Fibre Length 

2.1. Distribution of Load along the Fibre 
Length 

Consider a single fibre embedded in a matrix to a 
the Building Research Station, Department of the Environ- 
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length l/2. Let the x direction be parallel to the 
fibre length and the embedded end of the fibre 
be at x = 0, see fig. 1. 

Af ~ = 0  
"Am ~ ~ t 

I 

i 

L 

I 
I 

i T M  

1 
* ~  I/2 

Figure I Geometry of pull-out test. 
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I f  an axial load Pf is applied to the fibre then 

d P  = C'r(x) d x  (1) 

where dP is the change in the load P at x, 
between x and x + dx along the fibre, "r(x) is 
the function for the shear stress in terms of x 
(the length along the fibre) and C is the circum- 
ference of the fibre in contact with the matrix. 

I f  we assume that ~-oc (u - v), i.e. r = K(u - v) 
where K is some constant, u is the virtual 
displacement in the direction of the fibre at a 
point in the fibre a distance x from the embedded 
end if the matrix had the same elastic properties 
as the fibre and v is the virtual displacement of  
the matrix at the same point, if the fibre was 
replaced by the matrix. Then we have 

d P  = CK(u  - v) dx  (2) 
or 

dP 
d x  = H ( u -  v) (3) 

where H = CK, a constant. 
Differentiating we obtain 

d2P (du  d r )  
d x  2 -  g d x  -d-x = g(e~ - em) (4) 

where ef and em are the virtual fibre and matrix 
strains respectively at the point x. Thus we can 
write 

dx--- = H e  A?e  A = - k -  

where 

1 1 1 

-R = A~Ef = AmEm 

(5) 

A~ and Am are the cross-sectional areas of  the 

fibre and matrix respectively and E~ and Em are 
the elastic moduli of  the fibre and matrix 
respectively. 

We can solve the differential equation 

d2p 
dx--- 2 - aP  = 0 (6) 

where 

H 

R 

by transformation and obtain 

sinh ~/ax 
P = Pr sinh ~/al/2 (7) 

The sinh function is approximately linear for 
small values and exponential at large values; 
consequently the distribution of the relative load 
P/Pf  is affected by the length of the embedded 
fibre l/2. The ratio sinh ~/ax/sinh ~/a l/2 for ,]a 1/2 
equal to 1 and 10 is shown in fig. 2. Clearly when 
l/2 is sufficiently small that ~/a l/2 = 1, given 
a >~ 1, then the build-up in the load along the 
fibre length from the embedded end is approxim- 
ately linear. This is not the case for a long 
embedded fibre, e.g. when ,/a l/2 = 10. 

2.2. Dist r ibut ion of the Shear Stress a long 
the Fibre Length 

Previously we have defined r = K(u  - v) thus 
we can write 
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Figure 2 Variation of fibre load with length along embedded fibre. 
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dr  KP 
- -  (8) 

dx R 

and integrating we obtain 

KPt cosh ,~/ax 
- r  - R ~/a sinh ~/a 1/2 (9) 

The maximum shear stress occurs when cosh , lax 
is a maximum, i.e. x = l/2, at the point where 
the fibre enters the matrix, and is given by 

KPf 
~'max = ~ coth 4a I/2 (10) 

For an infinitely long fibre 

KPf 
~ma,, = ~-max ~176 = R 4  a ( l t )  

since coshv/a l/2 tends towards sinh ~/a l/2 as 
~/a l/2 tends towards infinity. Thus we can write 

cosh 4ax 
~" = Tma"~176 sinh ~/a l/2 (12) 

The distribution of the relative shear stress along 
the embedded fibre length is affected by the 
embedded fibre length for a given a. For short 
fibres cosh s/ax can be either greater than or less 
than sinh ~/a l/2 and ~" can be greater than or less 
than Zmax% see fig. 3. For long fibres cosh ~ax 
is always less than s inh, /al /2  and ~-/Tmax ~~ 
varies between zero (approximate since at 
x = 0 ,  

cosh ~/ax/sinh ~/a 1/2 = 1/sinh ( a  I/2 
where sinh ~/a 1/2 >> 1) and unity. 

3. Load to Pull-out and the 
Determination of the Shear Strength 

3.1. The Variation of the Fibre Load to 
Pul l-out with Embedded Fibre Length 

For an embedded fibre loaded to P~ the shear 
stress at the point where the fibre enters the 
matrix is given by equation 10 above. 

KPf 
" / ' m a x  = RW~/a coth ~/a l/2 (10) 

This is the maximum shear stress along the 
embedded fibre length. I f  the load Pf is such that 
rmax equals Zs, the shear strength of the interface, 
then the fibre will debond from the matrix at the 
point where the fibre enters the matrix. Whether 
the fibre continues to debond at a constant load 
Pf or whether an increase in load is necessary 
depends on a number of  factors. 

Consider an embedded fibre of  length l/2, 
debonded from the free end up to a length 

.1"4 

1,2 

1,O 

0.8 

0.6 ~" 

0'4 

0"2 [ 

0 0'2 0-4 0.6 0"8 1"0 
x/zl 2 

Figure 3 Variation of shear stress with length along 
embedded fibre, 
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Figure 4 Debonded fibre configuration. 
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(l/2 - x) into the matrix, see fig. 4, under the 
load P,. At the bonded/debonded interface the 
load in the fibre P (  is given by 

Pf' = Pf - tiC(l~2 - x) (13) 

where ~'t, the interfacial shear strength due to 
friction, is assumed to be constant over the 
debonded region. The shear stress at this point is 
given by 

KP~' 
r = ~ coth ~/ax (14) 

I f  as the debonded length increases (i.e. x 
decreases) this expression is always equal to 7s, 
the fibre will continue to debond. This will occur 
if the decrease in the term P (  is compensated by 
the increase in the term coth ~/ax as x decreases. 
Thus we can write 
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R,/a 
P (  = P~ - "riO(l/2 - x) = "rs -~-- tanh ~/ax (15) 

Differentiating we obtain 

dPf -rsRa -- sech 2 ~/ax - -r~C (16) 
dx K 

and the maximum value of Pf occurs when 
d P d d x  = 0, i.e. when 

1 1 /"rsRa 1 cosh_l / /~  
x = x= x = c o s h -  = #--a 

. . . . .  (17) 
At this point debonding continues withcut any 
further increase in Pt and the failure of the bond 
is catastrophic. Clearly the stage at which 
debonding becomes catastrophic is dependent 
on the ratio ~-s/~'i. When "rsl'rJ >~ cosh 2 ~/a ll2 then 
Xmax = l/2 and the debonding process is 
catastrophic immediately it commences. If  
rs/~-f < cosh 2 ~/a l/2 a further increase in Pf is 
necessary for debonding to continue. 

The maximum load on the fibre required to 
achieve complete debonding and pull-out is given 
by 

f p~max rsR ~/a -- K tanh ~/a l/2 

K 

or alternatively 

pfmax = pfoo tanh~/axraax 

p f m a x  - r s R  ~/a tanh ~/a X m a x  "4- r i G ( l / 2  -- X m a x )  

~/a(l /2-  Xmax + 
TS 

where p oo, the load required to debond an 
infinitely long fibre with no frictional forces 
present, is given by 

~'sR ~/a 
pfoo _ X (20) 

The variation in the load required to achieve 
complete debonding with the embedded fibre 
length factor ~/a l/2 is shown in fig. 5 (by 
plotting the ratio p~max/pfoo for various ratios of 
~'s/'ri). It is assumed that pfmax is less than the 
breaking load of the fibre and pull-out, not fibre 
fracture, occurs. Once debonding has been 
completed and pull-out has commenced the load 
necessary to continue pull-out will fall to a 
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Figure 5 Variation of maximum fibre load with embedded 
fibre length factor for various friction condit ions. 

value "tiC l/2 and continue to fall as the fibre is 
withdrawn from the matrix. 

Greszczuk [1] considers only the immediate 
catastrophic failure of the interfacial bond and 
assumes that all the fibre load is transferred to 
the matrix by shear forces with no frictional 

l/2 <~ Xmax l (18a) 

/ (18b) 
l/2 > Xmax 

t (19a) 
(19b) 

forces present. This requires that ~'i = 0, so that 
from equation 19 above the maximum load to 
pull-out being given by the expression 

Pt0max = ptoo tanh ~/a l/2 (21) 
This is identical with the ~'s/~'i = go plot in 
fig. 5 (i.e. ~'i = 0) and is a particular case of the 
more general equation, for Pr max (equation 19), 
when l/2 ~ Xm~x and catastrophic failure always 
o c c u r s .  

3.2. The Variation in the Maximum Shear 
Stress with Effective Embedded Fibre 
Length and the Determination of the 
Shear Strength from a Pull-out Test 

The maximum shear stress along the embedded 
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fibre length has previously been determined and 
is given by equation 10. 

KPf 
- - -  coth ~/a 1/2 (10) rmax -- R ~/a 

This can be written as 
rmax = rmax ~176 coth ~/a l/2 (22) 

where rmax m, the shear stress at the free end of 
an infinitely long embedded fibre, is given by 

KPf 
rmax~176 - R 4a (23) 

I f  the fibre has debonded to an effective bonded 
length l'/2 then 

KP( 
- - -  coth ~,"a l'/2 (24) T m a x  - -  R ~/a 

Thus we can write the general equation 

[ ri'/a ( l - l ' ) l co th , /a l ' /2  rmax = rmax m 1 2rmaxm 

. . . . .  (25) 

The variation in the maximum shear stress 
with effective embedded fibre length is shown in 
fig. 6 (by plotting rmax/rmax m against the 
effective embedded fibre length factor ~/a l'/2). 
This has been done for various values of  the 
ratio n = ri ~/a l/2r~ max where n is dependent 
only upon the relative value of the interracial 
shear strength due to friction along the unbonded 
region of the fibre for a constant original 
embedded fibre length. I t  is clear that either for 
very short fibres or for long fibres after sub- 
stantial debonding has shortened the effective 
embedded length the shear stress at the point 
where the fibre "enters" the matrix can be very 
large compared to the infinite fibre value for low 
friction conditions. At imminent catastrophic 
failure and pull-out 
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Figure 6 Variation of maximum shear stress with effective 
embedded fibre length for various friction conditions. 

to f iR ~/a/K. The discontinuity in the curve at 
l/2 = X m a x  indicates the value of Xmax. 

By substituting in the expression 

1 J r s  
Xmax - ~Ta c~ ~ (17) 

the shear strength may be determined from 

d ~la 
rs = ~ cosh 2 X m a x  ~/a (27) 

since A, C and Xmax are known and ~/a is 
estimated f r o m  a = H/R with H given by 
H = 2rrGm/loge(rl/ro) where Gm is the shear 
modulus of  the matrix and rl/ro is the ratio of  
inter-fibre distance to fibre radius (Cox [5]). In a 
single fibre pull-out test the ratio rl/ro is equal to 
the ratio between matrix and fibre radii and is 
determined by the geometry of the pull-out test. 

I f  the experimental results indicate a curve for 
which there i's no discontinuity with a linear part  
at long embedded lengths then ri is very small, 
rs/ri tends to oo and l/2 < Xmax. The shear 
strength may then be determined from the 

f R ,]a tanh ~/a l/2 [//2 ~< Xmax] pfmax = Zs " - ~  . . �9 

R ~/a Ra 
pfmax = rs T tanh ~/aXmax + zi ~ (I/2 - Xmax) �9 �9 [l/2 > Xmax] 

I f  the maximum load pfmax is determined 
experimentally for various embedded fibre 
lengths then curves of the form indicated in fig. 5 
may be obtained by plotting pfmax against 
~/a l/2. At long embedded lengths i.e. l/2 >> Xmax 
the gradient A may be determined and put equal 

(26) 

asymptote of  the p~max against ,/a l/2 curve 
since now by equation 26 

R ~ / a  
pfmax = % T tanh ~/a l/2 (26) 

and as ~/a l/2 tends to oo then tanh ~,/a l/2 tends 
to 1. Thus 
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Ts = pf~o 4 a (28) 
C 

An alternative approach used by Greszczuk [1] 
applicable only to the latter case above is to 
examine the trend of p~max at short embedded 
fibre lengths and extrapolate to zero embedded 
fibre length. Again we have by equation 26 

R ,/a 
pfmax = ~'s ~ tanh ~/a l/2 (26) 

Now as ~/a l/2 tends to 0 then tanh ~/a 1/2 tends 
to ~/a l/2. Thus 

pfmax 
rs tends to C--~/2 

i.e. 
rs tends to ~'av 

where ray is the average shear stress obtained by 
dividing the fibre load by the total interfacial 
area. This approach is only useful if frictional 
forces play little part  in the fibre pull-out 
mechanism. 

4. Conclusions 
The effect of the embedded fibre length and the 
elastic properties on the shear stress and load 
distribution along the fibre length are shown to 
be marked. For a given value of a, determined by 
the elastic properties and geometry of the pull- 
out test, the difference in these distributions for 
long and short fibres can be highly significant. It  
has been shown that the maximum fibre load 

necessary to cause complete debonding and 
eventual pull-out is dependent on the length of  
the embedded fibre and the ratio between the 
shear strength and the frictional "shear strength" 
of  the fibre matrix interface. Further, the 
development of  debonding of the fibre from the 
matrix can have a marked effect on the maximum 
shear stress developed at the interface. Conse- 
quently, if frictional forces play any part  in the 
pull-out mechanism, it is essential to differentiate 
clearly between catastrophic and non-cata- 
strophic debonding in order to determine the 
true shear strength of the interface. 
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